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Abstract-The four-component rotational operators called quatemions, which represent eye rotations in 
terms of their axes and atigles, have several advantages over other representations of eye position (such 
as Fick coordinates): they provide easy computations, symmetry, a simple form for Listing’s law, and 
useful three-dimensional plots of eye movements. In this paper we present algorithms for computing eye 
position quaternions and eye angular velocity (not the derivative of position in three dimensions) from 
two search coils (not necessarily orthogonal) on one eye in two or three magnetic fields, and for locating 
primary position using quaternions. We show how differentiation of eye position signals yields poor 
estimates of ail three components of eye velocity. 

Eye movements Search coils Eye torsion Listing’s law Quaternions 

INTRODUCTION 

The eyes rotate with 3 degrees of freedom: 
horizontal, vertical and torsional (Nagel, I87 1; 
Diamond, Markham, Simpson 8z Curthoys, 
1979; Collewijn, Van der Steen, Ferman & 
Jansen, 1985). A complete and accurate 
treatment of many oculomotor questions there- 
fore calls for a three-dimensional approach. 
However, the mathematics for the convenient 
measurement and representation of three- 
dimensional rotations is not commonly used by 
oculomotor physiologists. The aim of this paper 
is to present a number of techniques and com- 
puter algorithms for recording and analysing 
eye movements in three dimensions using the 
search coil method (Robinson, 1963). 

The papefldescribes algorithms for comput- 
ing eye position and eye velocity (not the deriva- 
tive of position in three dimensions), for 
locating primary position and Listing’s plane, 
and for converting data so that eye positions are 
expressed relative to primary position. The com- 
putations use the signals from two search coils 
on one eye in two or three magnetic field. The 
coils need not be orthogonal, nor need their 
locations on the eye be known, so the method 
can be used with experimental animals, where 
the coils are sutured separately onto the sclera 
and placement may be arbitrary. For human 
subjects, we use the Skalar annulus, a silicone 
rubber ring which contains two effectively or- 

thogonal search coils and adheres to the sclera 
by suction. Preliminary results of this work have 
been reported (Tweed & Vilis, 1987b). 

Quaternions and eye position 

Our technique for computing eye position 
differs from the one published by the inventors 
of the Skalar ring (Ferman, Collewijn, Jansen & 
Van den Berg, 1987a), because it computes a 
different representation for angular position. 
Ferman et al. computed eye position in Fick 
coordinates, as did Robinson in his original 
exposition of the search coil technique (1963). 
But there is no particular mathematical connec- 
tion between Fick coordinates and the search 
coil method; we shall show, in fact, that the 
search coil method lends itself most naturally to 
treatment using rotation matrices. Nor is the 
Fick system the most convenient or meaningful 
representation of eye position; we shall argue 
that a representation using the four-component 
rotational operators called quaternions has sev- 
eral advantages. Accordingly, in this paper we 
use rotation matrices to compute eye position 
quatemions. 

What is the quatemion representation of eye 
position? A quatemion is a four-component 
object which can be regarded as the sum of a 
scalar and a vector: 4 = q. + q. If the eye is 
displaced from primary position by a rotation of 
a degrees, and n is the vector of length I lying 
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along the rotation axis, oriented so that the 
rotation is clockwise when viewed in the direc- 
tion of II (or in other words so that when the 
right thumb points in the direction of n, the 
fingers curl round in the direction the eye has 
turned), then we associate with the eye position 
the quaternion: 

q = cos(a/2) + sin@ /2)n. (11 

This representation may look mysterious at 
first. The reason is that unlike the Fick or 
Helmholtz coordinates, quaternions were not 
invented solely for the purpose of representing 
angular position: they were invented for their 
elegant algebra. As a result, while quaternions 
reflect the algebraic properties of rotations more 
neatly than the other systems, their expression 
for a rotation may not seem as natural at first. 
However, it is easy to get a feel for quaternions 
because they closely resemble the intuitive repre- 
sentation of rotations in terms of axis and angle: 
the vector part of the quaternion, sin(a/2)n, lies 
along the axis of the rotation and its length, 
sin(aj2), is a function of the rotation angle (a 
near-linear function for angles of less than 
about 60 deg). 

The major advantage of the quaternion repre- 
sentation of eye position is its computational 
efficiency, especially for questions involving ro- 
tation axes and amplitudes-questions which 
are important to understanding the oculomotor 
system (Tweed & Vilis, 1987a). For example, 
questions involving Listing’s Law take a very 
simple form when expressed in terms of quat- 
ernions (Westheimer, 19.57). (See the Appendix 
for an introduction to quaternion algebra.) But 
computation aside, quaternions have at least 
two further advantages over the widely-used 
Fick system. 

One advantage is symmetry. The Fick system 
is asymmetric in that it defines the horizontal 
component of eye position with respect to a 
head-fixed axis, but the torsional component 
with respect to an axis fixed in the eye. If 
experiments show that these two components 
behave di~erently, it may not be clear to what 
extent the asymmetric definitions are respon- 
sible. In the quaternion representation all com- 
ponents were defined using a single rotation 
axis, n, expressed in head coordinates. 

The other advantage concerns three- 
dimensional position plots of movement trajec- 
tories. Clearly, the three Fick coordinates could 
be regarded as a vector, which could be plotted 
three-dimension&y. but the plotted points 

would have little geometric meaning. In con- 
trast, we can see from equation (1) that a plot 
of quaternion vectors would depict the instanta- 
neous rotational displacement of the eye from 
primary position in terms of axis and amplitude, 
the plotted vector lying along the axis. and its 
length a function of the amplitude. 

METHODS 

Data acquisition 

Eye movements were recorded from three 
adult male human subjects and three Mucuca 

fuscicufuris monkeys. In humans, the position of 
the left eye was monitored using the Skalar 
annulus. Each human subject sat with his left 
eye at the centre of curvature of a black hemi- 
spheric dome of radius 1 m, his head stabilized 
with a bite board. The subject’s head was pos- 
itioned with the sagittal plane vertical, and the 
angle of pitch was measured to help in later 
localization of Listing’s plane. The subject 
viewed the fixation target, a small LED on the 
dome or screen, with both eyes. To elicit a 
saccade, a computer switched off the LED and 
switched on another. At the same time, it trig- 
gered a data collection program. 

The subject’s left eye was at the centre of three 
orthogonal alternating magnetic fields (frequen- 
cies: 62.5, 125, 250 kHz). Three voltages from 
each coil-six channels in all-were sampled 
100 or 1000 times/set. After low-pass filtering 
(3 dB, 500 Hz), data were digitized and stored 
on disk. Eye position quaternions and eye veloc- 
ity were computed off line as described under 
Kinematic analysis. 

Data acquisition was identical for the monkey 
subjects, with the following exceptions. The 
monkeys had two enameled copper eye coils of 
5 mm diameter sutured to the sclera of one eye. 
Positions of the coils on the eye are not impor- 
tant for the accuracy of the measurements: for 
ideal data, noise- and distortion-free, our al- 
gorithm is indifferent to coil placement, as long 
as the coils are not parallel. In the presence of 
electronic noise, however, the sensitivity of the 
system is greatest when the coils are placed 
orthogonal to one another. Monkeys in this 
study had the coils placed on the medial surface 
of the globe, one pointing up and the other 
down with relative angles ranging from 84 to 
91 deg. Each monkey sat in a primate chair 1 m 
from a black tangent screen, its head fixed to the 
chair using an acrylic skull cap. When the 
monkey made a saccade to the target LED 
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Fig. 1. The voltage recorded from a search coil in a magnetic 
field is proportional to the component of a unit vector c, 
orthogonal to the coil plane, in the direction of the field. 

within a spatial and temporal window, it was 
rewarded with a drop of grape drink. 

Kinematic analysis 

The aim of this section is to compute the 
angular position quatemion and the angular 
velocity vector of the eye using two search coils 
on one eye in three orthogonal magnetic fields. 
A useful intermediate step in both computations 
is the calculation of the 3 x 3 rotation matrix 
that represents the displacement of the eye, at 
any moment, from some reference position. 
Interestingly, the search coil method turns out 
to lend itself naturally to the determination of 
rotation matrices, and it is for this reason, even 
more than for their intrinsic usefulness, that 
these matrices enter into our analysis. 

To see the close connection between rotation 
matrices and the search coil method we must 
recall what the signal from a search coil repre- 
sents. From Robinson’s original paper on the 
method (1963), we know that the signal Y from 
an eye coil in an alternating horizontal magnetic 
field is: 

Y =G,sinO; (2) 

where Gr is a constant which depends on the 
coil and the field, and 0 is the angle between the 
plane of the coil and the direction of the field 
(Fig. 1). We shall find it convenient to consider 
a vector c, of length 1, perpendicular to the 
plane of the coil. In Fig. 1, the coil is seen 
edge-on and our line of sight is perpendicular to 
the horizontal field direction. It is clear that: 

Y =G,sinO =G,cos/3; (3) 

where p is the angle between c and the field. 

Equivalently, Y is the projection or component 
of c along the direction of the field. Similarly, 
the vertical signal Z from the coil is the compo- 
nent of c along the direction of the vertical field, 
times some gain factor Gz. With a third field in 
the X direction, orthogonal to Y and Z, we can 
find all three components of c: 

c, = X/GX c2 = - Y/G,, cj = Z/G,; (4) 

(see Fig. 2). (In practice, magnetic field strengths 
were adjusted so that the three gains were equal: 
G, = Gy = G,.) 

If there are only two fields, the third compo- 
nent can often be computed; for example, if we 
know from the location of the coil that c, will 
always be positive within the oculomotor range, 
then c, = (1 - czcz - c~c,). With the three-field 
system, c can actually be computed from X, Y 
and Z knowing only the ratios of the three Gs 
and not their absolute magnitudes, because if 
the gains were accidentally scaled wrong, by 
some common factor k, then c would have 
magnitude k, and normalization would remove 
the scaling. In contrast, with a two-field system 
the absolute magnitudes of the two gains must 
be known. This difference may be of practical 
importance, because warping of the coils on the 
eye, which could conceivably occur during an 
experiment, would be expected to change the 
absolute values of the gains but not their ratio. 

The coordinate system in equation (4) is 
defined by the magnetic fields. The Y axis is 
aligned with the horizontal field and the Z axis 
with the vertical field; the X axis is orthogonal 
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Fig. 2. The three voltages induced in each eye coil by the 
three magnetic fields are proportional to the components of 
the associated coil vector c in the field directions. From two 
such vectors and their cross product, one can compute the 

orientation of the eye. 
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to both. As might be expected, the positive X 
direction is forward and the positive Z direction 
is up. But to get a righthanded coordinate 
system, we make left the positive Y direction, 
somewhat contrary to the convention that hori- 
zontal signals be positive for deviations to the 
right. For this reason, the sign of c? is opposite 
that of Y. 

If there are two coils on the eye (not necessar- 
ily orthogonal), we can compute two unit vec- 
tors cl and c2. The vector c3 = c, x c?, which is 
not of length 1 unless c, and c1 are orthogonal, 
can also be computed, giving us the orientations 
of three vectors fixed on the eye (Fig. 2). From 
these vectors we construct a 3 x 3 matrix C with 
columns c, , c2 and cj. We give the name c to 
the particular C computed when the eye is in 
whatever we choose to regard as reference posi- 
tion. When the eye is not in reference position, 
C and c will differ, but the two matrices will be 
related by the equation: 

C=Rc; (5) 

where R is the rotation matrix representing the 
displacement of the eye from the reference posi- 
tion. The equation: 

gives us R. 

R = Cc-‘; (6) 

In a moment we shall show how useful this R 
matrix is for our computations, but first we 
want to reemphasize that the search coil 
method, because it yields the projections of 
vectors along orthogonal coordinate axes, pro- 
duces rotation matrices virtually automatically. 
In fact, if we had three orthogonal coils on the 
eye initially aligned with three orthogonal mag- 
netic fields, and if all gains were ones and minus 
ones, the nine coil signals would be the nine 
components of the rotation matrix of the eye. 
But the above derivation shows that two coils 
and two fields suffice, if the X components are 
positive and we know the four gains. With three 
fields, we need only know the ratios of the three 
gains for each coil. 

A gain value, say the horizontal gain Gr, for 
a coil may be determined by turning the coil so 
that its vector points directly into the horizontal 
field. Then by equation (2), Y = G,cosO = Gy. 
That is, the gain is the maximum horizontal 
signal obtainable from the coil; it is also the 
negative of the minimum obtainable signal. 

With the matrix R in hand, the four compo- 
nents of the eye position quatemion q can be 
obtained by the equations: 

YO = j(R,, + Rx + R,, + 1 )i2. 

qT = CR,? - Rx )i4 y(,; 

qr = (4, - 4, )1’4 qo; 

qH = (4, - &zWqo, (7) 

where R, is the element in the ith row and jth 
column of R. If the eye is exactly 180 deg from 
reference position, q. = 0, and the last three 
equations must be altered. The component q. is 
called the scalar part of q; qr, qv and qH are the 
torsional, vertical and horizontal components 
respectively. But note this important conse- 
quence of equation (1): unlike some other mea- 
sures of ocular torsion, qT is the component of 
sin(a/2)n along a forward-pointing axis that is 
fixed in the head; it does not indicate rotation 
around the line of sight. 

To find the angular velocity vector we use the 
formula for the rate of change of a vector r that 
is rotating with angular velocity o: 

i = oXr. 

If we define the matrix 0 as shown: 

(8) 

0 -QH oy 

Q= 0” 0 ---UT 

-w,/ (tir 0 

Equation (8) gives us the relation 

(9) 

or 

R =RR, (10) 

R= AR-‘. (11) 

Because the inverse of a rotation matrix is 
simply its transpose (obtaining by interchanging 
rows and columns), R -’ is easily found. A is 
computed by numerical differentiation. Again, 
or is the component of w along a forward- 
pointing axis that is fixed in the head; it is not 
the component along the line of sight. 

Equation (11) shows that Q = fi (i.e. eye 
velocity equals the derivative of eye position) 
when the rotation matrix R = identity matrix I 
(i.e. when the eye is in reference position) or 
when o lies along the axis of the rotation R; so 
for example R = d when the eye is displaced 
from reference position by a pure horizontal 
rotation and is currently rotating purely hori- 
zontally. When o is not aligned with the axis of 
R, the discrepancy between velocity and deriva- 
tive increases as R departs further from Z (i.e. as 
the eye rotates farther away from reference 
position). In the Results section we show some 
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examples of discrepancies between derivatives 
and velocities when o is approximately orthog- 
onal to the axis of eye displacement from refer- 
ence position. 

We conclude this section by discussing two 
technical complications that can arise during 
kinematic analysis. First, we mentioned above 
that a coil vector can be computed using only 
two magnetic fields as a long as the sign of the 
X component is known. With the Skalar an- 
nulus, one coil vector c, is parallel with the gaze 
line and will therefore point forward (i.e. its X 
component c,, will be positive) for all eye pos- 
itions in the oculomotor range. However, the 
other coil vector c2 is orthogonal to the gaze line 
and will therefore point forward in some eye 
positions and back in others. For example, if c2 
points directly left when the eye is in primary 
position, its X component, cl*, will be positive 
for eye positions to the right and negative for 
positions to the left. It is neverthless possible to 
find cIZ with only two fields using the formula: 

Cl2 = 6 - c21c22 - w32)IcII; w 

where k is the dot product cl ‘c2 = 
c,,c,~ + c2,c12 + cJ,cs2, which is independent of 
eye orientation, and can therefore be computed 
in some position where the signs of c,, and cl2 
are known; for the Skalar annulus, the two coils 
are orthogonal, so k = 0. 

The second complication is that equation (6) 
alone may not yield the rotation matrix R. 
Because of crosstalk and nonuniformities in the 
magnetic fields, C and c are often skewed 
enough that CC-’ does not have exactly the 
properties of a rotation matrix; for example its 
inverse is not exactly equal to its transpose. As 
a result, equation (7), the formula for comput- 
ing q from a rotation matrix, can yield errors 
in the eye position quaternion near reference 
position. In particular, we found that the 
quaternions indicated zero displacement from 
reference position whenever the eye was within 
5-10 deg of that position. These errors are elimi- 
ated by adjusting the matrix CC-’ slightly, 
turning it into a rotation matrix using the 
Gram-Schmidt process from linear algebra (see 
e.g. Anton, 1984; Hoffman & Kunze, 1971); that 
is, writing r: and ri for the ith rows of Cc-’ and 
R, respectively, we let: 

rl = r; I I r; I ; 
I rz = [r2 - (r;*:,)r,]/lr; - (r;.r,)r, 1; 

r3 = r, x r2. (13) 
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Fig. 3. Geometric relation between gaze directions, displace- 
ment planes and primary position. when the gaze direction 
rotates 2a deg from & to 4, the associated displacement 

plane rotates a deg in the same direction. 

Primary position 

The above computations give us the eye pos- 
ition quaternion with respect to reference pos- 
ition, expressed in the coordinate system defined 
by the magnetic fields. The angular velocity 
vector is expressed in the same coordinate sys- 
tem. Not all reference positions and coordinate 
systems, however, are equally convenient and 
physiologically meaningful. Listing’s law tells us 
that there is a privileged eye position, the pri- 
mary position. The law states that given any eye 
position e, the eye assumes only those orien- 
tations that can be reached from e by a single 
rotation about an axis lying in what we shall call 
the displacement plane associated with e. Pri- 
mary position is the unique e in which the gaze 
line is orthogonal to the displacement plane 
(Fig. 3). The displacement plane of primary 
position is called Listing’s plane (Helmholtz, 
1867). For some purposes it is useful to have 
reference position correspond to primary pos- 
ition, and to have Listing’s plane aligned with 
some coordinate plane, specifically the qr = 0 
plane. 

It is difficult to get reference position to 
correspond to primary position at the time of an 
experiment because there is no quick method to 
determine when the eye is in primary position. 
Moreover, Listing’s law holds only inexactly 
(Ferman, Collewijn & Van den Berg, 1987b), so 
the theoretical notion of primary position does 
not correspond precisely to any real eye pos- 
ition. Our approach to this problem is to com- 
pute primary position after an experiment and 
then recalculate the quatemions relative to pri- 
mary position and put them into a coordinate 
system where Listing’s plane is aligned with the 
qr = 0 plane. 
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To do this, we use the fact that, if Listing’s 
law held exactly, then eye position quaternions 
computed relative to any reference position e 
(also fitting Listing’s law) would ail have their 
vector parts in a single plane, DP,, the displace- 
ment plane of e (Fig. 3), because the vector parts 
of these quaternions by definition lie along the 
axes of rotation from e. It can be shown that if 
V, is the forward-pointing vector of length 1 
orthogonal to DP,, then V, bisects the angle 
between g, and gP, the gaze vectors (i.e. the 
vectors of length 1 pointing along the gaze 
directions) in position e and primary position p 
(see proof in the Appendix). It then follows that 
the quaternion corresponding to primary pos- 
ition. expressed relative to e in magnetic field 
coordinates. is: 

p =v;g,-v, x &. (14) 

The first step, therefore, is to find a reference 
position e fitting Listing’s law exactly. Initially, 
we compute the quaternions of eye position 
relative to a reference position r, measured when 
the subject is looking at the centre light in the 
target array. This centre light is positioned so 
that the gaze vector g, is aligned with the 
forward-pointing X magnetic field; i.e. so that 
g, = i = (1, 0, 0) in field coordinates. We com- 
pute a plane of best fit to 10,000 eye position 
quatemion vectors collected over 100 set while 
the subject sits with his head still and makes 
saccades in the light throughout the oculomotor 
range. This plane is specified by the parameters 
L fr, and fH which are used to express qT as a 
function of qH and qv: 

qr =f ffvqv +ft/q!f. (15) 

If f is not 0. then reference position r does not 
itself lie exactly in the plane of position vectors; 
that is, r does not fit Listing’s law. But the eye 
position represented (relative to r) by the 

quaternion e = [Jm,J 0, 0] does lie in the 
plane and has the same gaze direction as r, i.e. 
in field coordinates g, = (1 ,O,O). We choose e for 
the new reference position, reexpressing the eye 
position quaternions relative to e by right-multi- 
plying them by e - ’ = [Jmj, -A 0, O,]. For 
example, the quaternion e itself, representing 
the new reference position relative to the old 
reference postion r, becomes ee - ’ = 1; this pure 
scalar quaternion, which by equation (1) repre- 
sents a 0 deg rotation, is obviously the correct 
representation for reference position relative to 
iself. 

To find DP,. one computes a new plane of 

best fit to the 10,000 eye position vectors reex- 
pressed relative to e. (When the torsional adjust- 
ment e-’ is small, however, the new plane is 
almost exactly parallel with the old-within 
0.3 deg in our data-and so one could substitute 
the original plane for DP, without introducing 
significant error.) We can compute the normal 
vector V,. to DP, using the ,f’s for that plane: 

V,=(l. -f;. -4,)~l(l. -.f,,. -.f,,)I. (16) 

Then by (14), the quatemion of primary pos- 
ition relative to e. in field coordinates is 

p=V,;i-V,xi=(C’,,O,-V3,1/‘?). (17) 

The eye position quaternions can now be recom- 
puted relative to primary position by right- 
multiplying them by p ’ = ( V, , 0, V,, - Y2 ). 

The recomputed quaternions, qp -I. can then 
be converted to a coordinate system in which gP 
points straight ahead (i.e. in which Listing’s 
plane is aligned with qr = 0) by putting them 
through the rotation p ’ : algebraically, this is 
done by “conjugating” them with p-’ to yield 
p ‘(qp -‘)p =p-‘q. Thus both operations--re- 
expressing the quaternions relative to primary 
position and changing the coordinate system-- 
are accomplished simply by left-multiplying the 
quaternions by p ‘. Angular velocity vectors 
and gaze vectors are not expressed relative to 
any reference position; they are simply rotated 
by p “( )p to put them into the coordinates 
where Listing’s plane is qr = 0. 

In summary, the quaternions are transformed 
by right multiplying them by e -’ and left multi- 
plying them by p I-q becomes p-‘qe -!--while 
angular velocity and gaze vectors are put 
through the rotation p -‘---a and g become 
p ‘up and p ‘gp. 

Calibration 

Before the coils are placed in the subject’s eye, 
the magnetic fields are adjusted so that, for each 
coil, the maximal signals from the three fields 
are equal: G, = G, = G,; (these values need not 
be the same for the two coils). If the magnetic 
field characteristics are constant day to day, and 
if the biases of the eye coils of different subjects 
are approximately equal, then no further cali- 
bration is ever necessary: once the fields are set 
at equal strengths, the algorithms described 
above compute the orientations of the eye coils 
for all subjects, regardless of the size and place- 
ment of their coils. If there are only two mag- 
netic fields, then we set G, = G,; no further 
calibration is necessary as long as the biases and 
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Fig. 4. Measured angular position (quaternion) vectors of a 
plcxiglas eye, viewed from behind (bottom) and above (top), 

lie close to the actual values (tick marks). 

the gains of the coils of different subjects are 
approximately the same. Since the positioning 
of the head relative to the centre target light may 
vary slightly day to day, the matrix c defining 
reference eye position is recalculated at the start 
of each experiment using the four or six coil 
voltages recorded when the subject views the 
centre target light. 

RESULTS 

Tests of calibration 

To test the accuracy of this technique, the 
Skalar ring that was used in human experi- 
ments, or a pair of search coils such as was used 

with monkeys, was attached to a piece of plex- 
iglas shaped and sized like a human eye. The 
Plexiglas eye was mounted on gimbals and 
placed in the magnetic fields where the left eye 
would be during experiments. The A’, Y and Z 
readings of each coil, six readings in all, were 
entered into a computer program. With the 
Skalar ring, a reference position was chosen so 
that the ring was oriented much as it would be 
in reference position during experiments. The 
program computed the matrix c-’ and then 
displayed the rotation matrix and quaternion 
representing current eye position relative to 
reference. 

In Fig. 4, dots are the vector part of position 
quaternions computed from two search coils; 
tick marks on the coordinate axes are the actual 
position computed from the gimbal angles. The 
coordinate axes are determined by the magnetic 
fields, as described in Methods, but the axes 
have been renamed, from X, Y, Z to qT, qv, qH, 
because we are now using them to plot the 
torsional, vertical and horizontal components of 
quaternions. Note the switching of horizontal 
and vertical component directions which occurs 
because quatemions represent displacements in 
terms of rotation axes: the coordinate axis for 
the qH component-the quatemion component 
that signifies how far the eye has rotated hori- 
zontally-lies vertically along the old Z axis, 
because the rotation axis for a horizontal rota- 
tion is oriented vertically; similarly, the qu axis 
lies horizontally along the former Y axis. Of 
course, one could switch the positions of the qv 
and qH axes, but then the plotted quaternion 
vectors would not lie along the displacement 
axes, and Listing’s plane would not be correctly 
oriented in space. 

Heads drawn in the upper left corners of the 
plots indicate the orientation of the (in this case 
imaginary) subject’s head for different views of 
the three-dimensional data. Thus the position 
vectors are viewed from the above in the upper 
plot and the lower view shows the same vectors 
from behind. 

The best way to interpret quaternion vectors 
is to use the right hand rule: point the right 
thumb in the direction of the vector and then the 
direction the fingers curl round is the direction 
the eye has rotated away from reference pos- 
ition. For example, consider the position repre- 
sented by the most eccentric small x at lower 
right in the behind view (indicated by an arrow 
in Fig. 4); the same position shows up as the 
rightmost x in the above view, lying just slightly 
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forward of the abscissa. For this position, then, 
the torsional component qr is approximately 
zero and the vertical and horizontal components 
are both negative. By the right hand rule, this 
position is up and right from reference position: 
if you point your right thumb down and right, 
your fingers curl round toward the up and right. 
The scale on the plot shows that this position is 
rotated 90deg away from reference position. 

The plot shows that the magnitude of error is 
never more than 10% for eye positions over a 
90 deg range. The system is fairly robust, in that 
errors of 334% in the estimatts of relative coil 
gains, and large shifts in reference position 
(prior to the calculation of e), had little effect 
on accuracy. Similar acuracy and stability were 
obtained with the Skalar annulus. Deformation 
of the Skalar ring also had only a small effect on 
accuracy, presumably because warping only 
changed the overall sensitivity of the coil and 
did not change the ratios among GX. G, and G,. 
This finding suggests that differences in shape 
between the Plexiglas and human eyes are un- 
likely to vitiate the calibration. 

There is some independent conflation that 
the accuracy of eye position recordings is better 
than 10% when the coils are on the eye: gaze 
lines computed from the eye position quatern- 
ions are always rotated away from reference 
position by the same angle as gaze lines deter- 
mined based on target light locations. with an 
error of less than 10%. 

The observed error does not come from the 
position-computing algorithm, because when 
fake data representing the signals from a perfect 
coil system were input to the program, the 
(roundo~ error in the output was negligible. 
The error is likely due to magnetic field 
nonorthogonality or curvature and to biases, 
crosstalk and other distortions introduced by 
the electronics. 

One way to check for these factors is to 
display the vectors c, and c2 (defined in Kine- 
matic analysis). In a perfect system, these vec- 
tors will maintain a constant angle with respect 
to one another, and they will both lie on a 
sphere of radius one. A shift of the sphere away 
from the origin indicates the amount and direc- 
tion of uncorrected bias in the data collection 
system. Elongation or flattening of the sphere 
along a particular axis reveals over- or under- 
estimates of coil gain in that direction. And 
nonhorizontal movement of a coil vector, say, 

during horizontal rotation of the gimbals indi 
cates electronic crosstalk or imperfection in the 
field directions. In some cases it is possible to 
correct such errors by recentring the sphere or 
by transforming an ellipsoid shape back into a 
sphere. 

We now examine the positions of a real eye, 
expressed using quaternion vectors, while a 
monkey makes saccades with the head station- 
ary. Figure 5 shows the results of the program 
that computes primary position and shifts the 
data into Listing’s coordinates. Figure 5a shows 
the vector parts of about 10,000 eye position 
quaternions, sampled over 100 set, computed 
relative to the original reference position and 
expressed in the coordinate system of the mag- 
netic fields. In the behind view the dots are 
arranged in a cloud, giving an indication of the 
oculomotor range in the horizontal and vertical 
directions. In the right side view, the dots form 
a band inclined at about an 18 deg angle to the 
vertical, indicating that the eye position vectors 
lie in a plane tilted back from the qT = 0 plane. 
Because of this tilt away from vertical, the above 
view gives little impression of a planar arrange- 
ment. Note that this plane of eye position 
vectors is not Listing’s plane, which contains the 
vectors of eye positions computed relative to 
primary position. Rather, it is the displacement 
plane of reference position, containing the vec- 
tors of the same eye positions computed relative 
to reference position. 

To reveal Listing’s plane, the eye positions 
must be reexpressed relative to primary pos- 
ition, Figure 5b shows the reexpressed quat- 
ernions in a new coordinate system where 
Listing’s plane is aligned with qT = 0 (ordinate 
in the right side view; abscissa in the above 
view). The proximity of all the quaternion vec- 
tors to this plane shows that Listing’s law is 
accurate to within about 4 deg in this case over 
a 100 set period, even during the saccades. The 
behind view shows that the former reference 
position (at the centre of the cloud) was about 
36 deg below primary position (the origin), and 
that primary position is actually near the edge 
of the oculomotor range for this subject. 

To find the orientation of Listing’s plane 
relative to the head, one needs to know both the 
direction of gaze and the orientation of the head 
with respect to the magnetic fields when the eye 
is in reference position. 



Computing eye position and velocity 

(a) 
0 



106 

b 

C 

Fig. 6. Four saccades by a human subject. (a) The eye velocity vector points forward, in the positive 
(clockwise) torsional direction throughout all four saccades. (b) Coil voltage vectors c, (solid line) and 

c2 (dashed line) during the same saccades. 

quaternion vectors) make different trajectories 
look straight or curved. Mathematically, in fact, 
the set of all possible eye orientations is a 
“curved space” (Schutz, 1981), and so the idea 
of a straight path not does strictly apply but is 
replaced by the idea of a geodesic. The simplest 
characterization of the geodesics is that they are 
the trajectories for which the direction of the 
angular velocity vector is constant. We therefore 
say that a saccade is straight if the direction of 
the velocity vector, the axis about which the eye 
rotates, is constant throughout the movement. 

Another reason for looking at velocity traces 
is that many current models of oculomotor 
control propose that motoneurons are driven in 
part by eye velocity commands (Skavenski & 
Robinson, 1973; Tweed & Vilis, 1987a). If this 
idea is correct, then velocity traces will give 
information about these commands; for ex- 
ample, velocity traces during saccades will indi- 
cate the degree of coupling between the various 
populations of short lead burst neurons which 
are believed to provide the velocity command 
during saccades. A third, related, motive for 

obtaining accurate plots of eye velocity is that 
velocity trajectories provide tests for different 
models of the saccadic system (Tweed & Vilis, 
1987a). 

Figure 6a shows velocity traces for four hu- 
man saccades which take the gaze point in the 
clockwise direction around a rectangle centred 
on primary position. On the left side of the 
figure we see the traces from a viewpoint behind 
the subject, and on the right we see the same 
traces from the subject’s right side. For ex- 
ample, the loop labeled “1” is the velocity trajec- 
tory for one leftward saccade. The loop begins 
at zero velocity (the origin); during the acceler- 
ation phase the velocity vector grows, mostly up 
but also (as seen in the side view) slightly 
forward; after peak velocity is reached, the 
velocity vector shrinks back to zero along ap- 
proximately the same straight path. By the right 
hand rule, this is a leftward saccade with a slight 
clockwise component. The figure shows that all 
four saccades have narrow and nearly straight 
velocity loops, indicating that the axis of ro- 
tation is roughly constant during the saccade; 
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Fig. 7. Derivatives of coil signals (left side of each pair) and 
velocity components (right side), plotted against time, dis- 

agree in aft three dimensions. 

that is, the saccades are roughly straight. The 
side view shows that all the loops tilt forward 
out of Listing’s plane (the ordinate in the side 
view). This finding is in keeping with the geo- 
metric fact that fixed-axis rotations that take the 
gaze point in a clockwise direction around 
primary position must have forward-pointing 
axes to keep the position vectors in Listing’s 
plane (Tweed & Vilis, 1987a). 

Velocity us derivatives 

We mentioned earlier that angular velocity 
cannot be computed by differentiating position 
signals. Figure 6b, plotting the coil voltage c1 
and c2 during the four saccades of Fig. 6a, gives 
some indication of what can go wrong when the 
derivatives of the coil signals are used to esti- 
mate velocity. The behind view (left side of 
figure) shows c, (solid line), which points for- 
ward roughly in line with the gaze direction, 
recreating the clockwise circuit of the gaze point 
around the straight ahead direction, which in 
this case corresponds to primary position. The 
vector c2, which points left in primary position, 
is not very informative when viewed from be- 
hind, but in the side view shows a figure-eight 
trajectory. 

When the derivatives of coil signals are used 
to estimate eye velocity, the derivative (here 
called A) of the Y component of c, is taken as 
a measure of horizontal velocity; the derivative 
p of the 2 component of c, is the measure of 
vertical velocity; and, if c2 points left as in this 

case, the derivative f of the 2 component of e2 
is the measure of torsional velocity, with posi- 
tive 1” indicating clockwise rotation. 

Figure 6 shows how this approach seriously 
mi~stimates the torsional component of veloc- 
ity. In all four saccades, the eye is moving 
circumferentially (orthogonally to the radial, 
cent~~tal/~nt~fugal direction); that is, the eye 
velocity vector w is approximately orthogonal 
to the axis of eye displacement from primary 
position-a situation that maximizes the dis- 
crepancy between derivatives and velocities in 
any given eye position, The side view in Fig. 6a 
shows that all four saccades have positive, 
clockwise torsional velocity components 
throughout. In the side view in Fig. 6b, the c2 
vector (dashed line) moves upward during sac- 
cades 1 and 3, generating positive p values to 
indicate clockwise rotation; but the vector 
moves downward during saccades 2 and 4, 
generating negative f values to falsely indicate 
counterclockwise rotation. The problem in sac- 
cade 4, for example, is that while the rotation 
axis is pointing forward, indicating a clockwise 
component, the c2 vector is pointing even fur- 
ther forward because the eye is looking right, 
and so c2 is in front of the rotation axis. As a 
result, when the gaze vector cl rotates down, the 
tip of c2 also moves down. 

Figure 7 shows how the time derivatives of 
the coil signals depart from true angular velocity 
in all three dimensions. Figure 7a shows the 
derivatives of the coil signals and velocity plots 
for saccade 3 from Fig. 6; Fig. 7b shows the 
same for saceade 4. For each saccade, the 
derivatives ii, P and p are plotted against time 
on the left side; the velocity components oH, u_+ 
and or on the right. In both cases, the solid lines 
indicate torsional components, dotted lines ver- 
tical, and dashed lines horizontal. The plots 
show that f is a reasonable approximation to 
wr during saccade 3, but it points in the wrong 
direction for a total error of over ZOOdeg/sec 
during saccade 4. Less strikingly, but still signifi- 
cantly, 3 and & both overestimate and underes- 
timate oy and q, by up to about 15%-a 
50 deg/sec error in the case of 3 in saccade 4. 
Switching from derivatives to velocities can alter 
the durations and timing of the torsional, verti- 
cal and horizontal components of a saccade, 
often improving their synchronization and con- 
verting biphasic profiles into unidirectional 
ones, as in the vertical trace for saccade 3. 

It is irn~r~nt to realize that the discrepan- 
cies between derivatives and velocities in Fig. 7 
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have been minimized by using a Skalar annulus restrictions on the two-field technique are not 
that is aligned with the magnetic fields in refer- due to a flaw in our particular algorithm, but 
ence position. Nonorthogonal or nonaligned reflect the basic geometry of the problem: it can 
coils would in general lead to larger errors. And be shown that in general one needs to know six 
finally, differentiation of Fick, Helmholtz, elements (arranged in two rows or two columns) 
quaternion, or any other eye position coordi- of a rotation matrix to reconstruct the whole 
nates would lead to similar errors, because no matrix. Equivalently, one needs at least six coil 
change of representation will remove the fact signals in general to compute the orientation of 
that, for three-dimensional rotations, velocity an eye. This requirement holds for any tech- 
depends on current position as well the deriva- nique that works by finding the locations of two 
tive of position (Tweed & Vilis. 1987a). vectors fixed in the eye. 

DISCUSSION 

We have described a method for computing 
three-dimensional eye position and velocity 
from search coil signals. Eye positions are ex- 
pressed using four-component objects called 
quaternions. The last three components of the 
quaternions-the vector parts, which depict the 
axis and magnitude of the eye’s rotation from 
some reference position-are used for three- 
dimensional data plots. The advantages of the 
quaternion representation over other schemes, 
such as raw coil signals or Fick coordinates, 
include easy computations, symmetry, utility for 
oculomotor models, a simple form for Listing’s 
law and relatively transparent three-dimen- 
sional graphics. 

In three dimensions, angular velocity is not 
the derivative of angular position, and so veloc- 
ity cannot be computed by digitally differentiat- 
ing position. A simple, correct formula, 
equation (1 I), which incorporates the depen- 
dence of angular velocity on current angular 
position, is used in this paper. We show that 
computing eye velocity by differentiating pos- 
ition data leads to large errors, particularly in 
torsional velocity, even in the ideal case of 
orthogonal eye coils initially aligned with the 
magnetic fields. 

Quaternions and gaze direction 

The method uses the search coil-magnetic 
field technology which was first applied to eve 
movements by Robinson (1963). Compared 
with the photographic technique developed by 
Nakayama (1974) for computing the rotation 
matrix of the eye, the search coil method may be 
less accurate for static measurements, but it has 
the advantages that it requires no estimate of the 
rotational centre of the eye, and it permits a 
high frequency of eye position measurements 
(up to 1 per msec in this paper) and therefore 
allows accurate estimates of eye velocity. 

In Fick or Helmholtz coordinates, the vertical 
and horizontal components of eye position 
uniquely determine the gaze direction; the tor- 
sional component does not affect gaze direction 
because it merely describes how far the eye 
is rotated around the line of sight. With 
quatemions, however, the torsional component 
yr does influence gaze direction: since qr 
describes how far the eye has rotated around a 
head-fixed axis orthogonal to Listing’s plane, a 
change in qT will change the gaze direction 
unless the gaze direction is also orthogonal with 
the plane. Thus with quatemions, qv and qH do 
not uniquely determine gaze direction unless qr 
is constrained to be a function of qv and q,,. 

Algorithms for computing position and veloc- 
ity are described for a system with two search 
coils (not necessarily orthogonal) on one eye, 
and three orthogonal magnetic fields. The ad- 
vantage of using three fields is that the method 
gives the true orientation of a coil even if the 
sensitivity of the coil has changed. Thus there is 
no need to recalibrate for coils of different 
sensitivities. In special cases (for example, when 
one eye coil is initially near the frontal plane and 
the range of eye movements is less than 
+90 deg), it is possible to apply the technique 
using only two magnetic fields, but the precise 
sensitivities of each coil must be known. These 

The fact that the saccadic system does indeed 
constrain qr t0 be a fUnCtiOn Of qv and (1H 
(Donders’ law; Donders, 1847) may indicate 
that the neural representation of eye position in 
the oculomotor system is more quaternion-like 
than Fick-like. Certainly the innervations of 
extraocular muscles are like quaternion compo- 
nents in that no subset determines the gaze 
direction. Thus the quaternions may be more 
physiological than Fick vectors as regards the 
coding of eye position. 

However. this property of quaternions may 
not be helpful for some types of data interpre- 
tation. If there are large deviations from 
Listing’s law, say during torsional head rotation 



or in the presence of brain lesions, then the 
behind view of the quatemion vectors 611 no 
longer give a good picture of the gaze direction. 
In these cases, the gaze vector g, which has 
length 1 and points forward along the line of 
sight, can be computed from q and & (the gaze 
vector in reference position) by the formula: 

g=q&4-‘. (18) 

In summary, quatemions, which represent 
rotations in terms of their axes and amplitudes, 
have several advantages over other represen- 
tations of three-dimensional eye position in 
current use. The magnetic field-eye coil 
method, using two eye coils per eye and three 
magnetic fields, is ideally suited for computing 
the rotation matrix representing the eye’s angu- 
lar displacement from any reference position. 
From this matrix and its time derivative, the 
quatemion of eye position and the angular 
velocity vector of the eye are easily determined. 
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APPENDIX 

Quaternions 

This section defines some of the basic operations of 
quatemion algebra (see also Westheimer, 1957; Tweed & 
Vilis, 1987a; Brand, 1948; Tait, 1890). A quatemion is a 
four-component object which can be regarded as the sum of 
a scalar and a vector: 

4 = 40 + (I; (AlI 
although the eiement q is technically a bivector (see Riesz, 
1958; also Cl$ord Algebru below). Any quatetnion q can be 
written 

4 = lq I[cos(u/Z) + n sin(u/2)]; (A2) 

for some u and some unit vector n; u/2 is called the angle 
of the quatemion, n its axis, and 1q 1 (the square root of the 
sum of the squares of the components) its magnitude. 

Quatemions can be added and subtracted like four- 
component vectors. They can also be multiplied and 
divided. Using indices O-3 for the four components of a 
quaternion, the formula for a quaternion product p = qr is: 

p. = qoro - qlrl - q2rz - w3; 

p, = qOr, + qlro + q2r3 - 4312: 

p2 = qor2 + 42r0 - qlr3 + q3rl; 

P, = qorl + q3r0 + ah - 4211’ (A3) 

To divide bv a auatemion u. one multinlies bv the multi- 
plicative inverse 4-r. If q = 4, + q, then i-r = (4, - q)/lq 12; 
in particular, if q has magnitude 1 then q -’ is simply qn - q. _ ._ 

The reason quaternions are regarded as representing 
rotations is that, for any vector v and nonzero quaternion 
p. the vector: 

v’ =pvp-‘; (A4) 
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L -. -. 

Fig. Al. Two reflections yield a rotation. The L-shaped 
object is reflected first in mirror M and then in M’. The 
mirrors are at 45 deg to one another, and intersect along a 
line orthogonal to the plane of the paper; their effect on the 
object is a 2 x 45 deg = 30 deg rotation, in the direction 
from M toward M’, about their line of intersection (the 
object also translates in this example, because for clarity it 
is drawn displaced from the axis of rotation). Any other 
mirrors with the same angle and line of intersection will 
generate the same rotation, as long as the reflections occur 

in the correct order. 

is obtained by rotating v about the axis of p, through twice 
the angle of p. The resultant of two rotations can also be 
computed using quatemion multiplication. That is, rotation 
p followed by rotation q yields the overall angular rotation 
qp. Since multiplying any quatemion by 1 leaves the 
quatemion unchanged, q = 1 is the unit quatemion that 
represents no displacement. 

Cl@ord Algebra 
A useful algebraic tool for describing Listing’s law is the 

Clifford product of vectors (Riesz, 1958). The formula for 
this operation is best expressed using three orthogonal unit 
vectors e,, e2 and e,: 

e,e, = I if i =i. = -e,e, otherwise. (AS) 

To multiply other vectors, express them as linear combi- 
nations of the e; and multiply term by term. Thus, if 
v = u,e, + OF, + ojej and w = w,e, + w,e2 + w,e, then 
VW = u,w,e,e, + v,w;e,e2 + u,w3e,e3 + u,w,ep, + u,w,e,e,+ 
qw3e2e3 + u,w’,e,e, + u,w2e3e2 + u,w,e,e, = (LQW, + o,w,+ 
P,w,) + (ty2 - u2wl)e3e2 + (c,wJ - u3w,)e,e3 + (u2w, - 
c,w2)e2e,. Each product e,e, (i #j) is an object called a 
bivector, whose grometric interpretation need not concern 
us. For our present purposes, it is convenient to ignore the 
distinction between vectors and bivectors by “identifying” 
e,e, with e,, e,e, with e2. and e2e, with e,; under this 
correspondence, the computation above shows that the 
Clifford product can be expressed using the dot and cross 
products of vector algebra: 

vw=v.w-VYX. (A6) 

Rejections and Rotations 

It is easy to verify that the Clifford product has the 
following properties: for parallel vectors. VW = WV = w. v; for 
orthogonal vectors, vw = --WY. Because of these properties, 
Clifford algebra can be used to compute reflections. Thus. 
let II be a unit vector and let v be any vector; v can be 
expressed as the sum of two components, one (v,) parallel 
with II and the other (v,,) orthogonal to u. Then 

“VU = - u(v, f v,)u = ~- “V,“” -- “V,” = -““VP + u”v,8 z_ 

--I~ + v,,-I.e. --vu IS v reflected m the (flat) mirror 
i through the origin) orthogonal to u 

The connection between Clifford algebra and rotations 
comes from the fact that any rotation is equivalent to two 
successive reflections: suppose M and M’ are mirrors at an 
angle of (a/2) deg relative to one another and n IS a unit 
vector lying along the line of intersection of the planes of M 
and M’; then reflection in M followed by M’ is equivalent 
to a rotation of (I deg about the axis n in the direction from 
M toward M’ (Fig. Al). If u and II’ are unit vectors 
orthogonal to M and M’, respectively, we can put any 
vector v through this rotation using the reflection formula 
twice: \ + - u’( - uvu)u’ = (u’u)v(uu’ ). Noting that 
(u’u)(uu’) = u’(uu)u’ = u’u’ = 1 Xe uu’ = (U’II- ‘--and 
writing q for u’u, we obtain Y -+ qvq ‘. Application of 
equation (A6) shows that this y is the quaternion 
cos(ai2) + n sin(a ‘2) which ae usually use to represent this 
rotation. 

Listing’s Lm 

Suppose the eye assumes only those positions that can be 
reached from a particular position e by rotating about an 
axis in a particular plane DP,, and that V, is the forward- 
pointing unit vector orthogonal to this plane. Then any 
admissible eye rotation from position e is a Clifford product 
of the form W,. for some forward-pointing unit vector V: 
since the axis for the rotation VV, is parallel with V x V,, 
and any vector orthogonal to V, lies in LIP,. the axis is in 
DP, as required. 

Suppose q and r are two other admissib!e eye positions. 
and that V, and V, are the vectors such that q = V,Vp and 
r = V,V,e. To get from q to r. the eye could go from q to 
u by the rotation V,V, (the inverse of V,V,) and then from 
c’ to r by V,V,; the rotation from y to r is the composite 
(V,V,)(V,V,) = V,(V,.V,)V, = V,V,. That is, for any admis- 
sible eye position q. there is a vector V, such that the 
rotation to any other admissible position has its axis in the 
plane orthogonal to V,, This plane is called the displacemenr 
pime of q, DP,. 

Let $ be the gaze vector in position q-i.e. the unit vector 
pointing in the gaze direction. We shall now show that the 
position reached by the rotation V,& starting from q does 
not depend on q; i.e. for any two admissible positions q 
and r, V,g,r = V,g,q. Since g, is obtained by putting g,, 
through the rotation V,V,, we can substitute 
(V,V,)g$V,V,) for g, on the left side and simplify to obtain 
(V,g,)(V,V,)r, which = V,$q, confirming the equality. The 
unique position: 

P = v&q. (A71 

1s called primary position. The displacement plane of pri- 
mary position is called Listing’s plane. Rewriting equation 
(A7) using (A6), with q = I, yields formula (14) for primary 
position. 

For any admissible position q, the rotation V&-about 
an axis orthogor.al to V, and 99, turning in the direction 
from $ toward V,, through twice the angle between & and 
V,-aligns g1 with g,,. That is. V, bisects the angle between 
G and gP. It follows that in primary position (and only 
there), $ = V,. 


